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Abstract

The paper considers the method for determination of an input signals class of the continuous-time
linear control system. The class of input signals of a continuous-time linear control system is
specified by a heterogeneous differential equation. An estimate is obtained for the steady-state
error of control. An example of solving a problem is provided.
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AHHOTaNUA

B craTtpe paccMaTpuBaeTcss METON ONpeneeHNs Kiacca BXOAHBIX CUTHAIOB JIMHEHHONW CHCTEMBI
YIOpaBJICHUS C HENPEPHIBHBIM BpeMeHeM. Kiiacc BXOAHBIX CUTHAJIOB JIMHEHHON CHUCTEMBI
yIpaBlieHHS C HENPEPHIBHBIM BPEMEHEM OIUCHIBACTCS OOBIKHOBEHHBIM UG PepeHINATEHBIM
ypaBHeHueM. [lomydeHa olleHKa yCTaHOBHBIIEWCS OMIMOKM ynpasieHus. [IpuBomutcst mpumep

peUICHUA 3aavu.

KiroueBble ¢jI0Ba: CHCTEMBI YHpaBJICHUSA; BXOJAHBIC CHUT'HAJIbBI; ,Z[I/I(l)q)epeHL[I/IaJ'ILHOG YpPaBHCHHUC,

YCTAHOBUBILIASICS OIIMOKA.

Introduction

The quality of the synthesized control system
depends on utilization of information about input
signals. Therefore, the so-called absorption principle
[7] in the automatic control theory is widespread. The
absorption principle is built on class description of
the input signals by homogeneous differential or
difference equations with arbitrary initial conditions
[1, 3-5, 8-11]. In this paper, the larger class of input
signals of a continuous-time linear control system is
specified by the stationary heterogeneous differential
equation with arbitrary initial conditions and a
restricted right member [2, 6]. This approach can be
easily extended to discrete systems.

1. Statement of the problem
Let

Q,(s) 0.(s)’
be transfer functions corresponding to a desirable
control system and a synthesized control system,
where D(s) =0, (s)Q,(s) is a stable polynomial.
In this paper, we shall determine the signals

class V; =V[t,, +0) such that

V>0 Vf eV, 3t >t Vit (e()]<8). (2)
here

W, (s)= W, (s) (D
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e@)+E@) =W, (s)=W.(sHF(s), F(s)+f(@). (3)
2. Main results
Consider the error E(s) determined by (3).

Using (1), we get
R, ()0, (5) =R, (5)Q,(5)

E(s)= D(s) F(s) (C))
or
L(s)
E(s)= F 5
(8)= D(s) (), (&)
where degD=n, degL=m , and
L(s)=R,(s)Q,(5) =R (5)Q,(5) . (6)

We show that the input signals class V5 is

defined by the set of solutions of the linear
differential equation

d
L(p)f([):¢(t)9 P ZE’ @)

with arbitrary initial conditions and a piecewise
continuous restricted right member, i.e.,

lo(| <M (5) Vit =1, M(5)=0. (8)
Here feC"'[t,,+) and f"™ is piecewise
continuous. Next we define M =M(). The

D(s)=[[Gs+4)" . Yk =n,
i=1 i=1

Then

i=l j=

where

application of the Laplace transformation to equation
(7) yields

L()F (s) =D(s) + L, (s), )]
where L, is a polynomial of degree m —1. Note that
the Laplace transformation of the functions f ™" ),
i=1,....m and ¢ 1is existed. Combining (5) and
(9), we obtain

E(s)zLO_(S)Jr%. (10)
D(s)  D(s)
Since D(s) is the Hurwitz polynomial, it follows that
lime () =0. (11)
Here
L, (s)
&)+ (12)
D(s)

is a transient components of the error &(f). We can
therefore write

Vy>0 3 >1, Vi>t (g @)|<p). (13)
Let us consider now a steady-state components
q)(s)

1 {(Hz) }
c. = lim
Y (J—l)'s» 4 dsf‘ D(s)

By the convolution theorem, we have

£0=3Y

I]j](k_ )'

Taking into account (8), we get

L0 <MGTY

Iljl(k_ )'

It can easily be checked that

t
)

Finally, we obviously obtain the estimate

OBTIE) ) .

=l j=1

where ¢; is given by (17) and

I(t —7)/Ree™"dr< Irk"j Re e’ dr =

L(1)+ 14
&,(1)= Ds) (14)
— of the error &(¢) . Let

2, €C, Re 4, >0. (15)
(16)
G-Dids ]I[H(s+ﬂ,) . (17)
j (t—-0)7 e p(r)dr. (18)
I(t—r)k 'Ree™"dr. (19)
k=t 20)

(Re A,) "
=M(5)A Vi> 21
(Re m" = MOA V20, @D
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|4

ks lc, | n
A2 Z(Rez)k e (2
Combining (21) and (13), we get the following
proposition:

Vy>0 3t >t >t (e <y +M(S)A). (23)
Let y=6/2 and

o
M (0) A (24)
Thus proposition (2) is executed for the input signals
satisfying conditions (7), (8), and (24).
Notice that relationships (17) and (22) indicate
the practical methods for the decrease of the steasy-
state error. If @(t) =0, then the steady-state error is

equal to 0.

3. Example
Let us consider

W,(s)=s, W(s)= il , =const>0. (25)
s+1

Therefore,
L(s)=s", D(s)=s <1 (26)
T

From (22), we obtain A=r7. Thus the signals class
V5[0, + ) is defined by the following conditions:

fO=9@), (27)

lp(t)IKM(5) V=0, M(5)=2£. (28)
T

This implies that
fO=C,+Cit+ [(t-D)p()dr, ¥ C,.C,eR.(29)
0

Clearly, algebraic polynomials of degree 1,
trigonometric polynomials, decreasing exponents,
and logarithmic functions belong to the selected class

V5. Note also that the class V5 are not exhausted

the listed functions.
Let us consider now
2 3
W,(s)=— > g=const>0. (30)
(s+a)’
Hence,
L(s)=s(s+a)” +2a’ =(s +2a)(s* + &),
D(s)=(s+a)’. (31
Using (22), we get A=1/a. Consequently the
signals class V,[0,+o0) 1is determined by the

equation
(p+200(p* +a ) f =), p=2. (2

where
ad
lpMIKM(S) V=0, M(5):7. (33)
If @(t)=0, then the element with transfer function

(30) realizes the asymptotically fine noise-proof
differentiating of amplitude modulated signals

f@)=Ce™ +C,sinat + Cycosat VC,,C,,C, eR. (34)
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