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Abstract 
Genetic research used to be data-driven under the framework of well-established 
gene theory. With the advance of various-omics technologies, large-scale data gen-
eration has become routine. However, data analyses have unexpectedly become ex-
tremely challenging due to the highly heterogeneous nature of bio-data. Further-
more, these diverse data sets seem to be inconsistent with some key predictions of 
gene theory. To briefly address this new reality, this editorial suggests a new ge-
nome theory to explain the new facts. By briefly comparing cytogenetics and gene 
sequencing research, the importance and key principles of chromosomal coded bio-
information is highlighted in the context of evolutionary studies and disease re-
search. 
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While classical cytogenetic analyses 
were technically challenging (e.g. extensive 
training and practice are required to perform 
different banding methods and precisely iden-
tify altered chromosomes and chromosomal 
fragments), the theoretical perspective moti-
vating it was rather simple: chromosomes are 
the carriers of genes, and clonal chromosomal 
aberrations are the focus for analyses [1, 2]. 
Molecular cytogenetics has certainly made 
cytogenetic analyses much easier. Although 
the higher order of chromosomal structure is 
still unsolved, karyotype analyses are working 

so far, especially with the help of various 
FISH technologies, including SKY and M-
FISH.  

The discovery of CNVs (copy number 
variations) generated high excitement, and 
array CGH (comparative genomic hybridiza-
tion) has become routine in cytogenetic labs.  
For years, there have been discussions and 
predictions on whether array CGH should re-
place classical karyotype analyses [1, 3]. One 
of the key rationales of such discussion is 
simple: array CGH provides much higher res-
olution, and in the era of molecular biology, 
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higher molecular resolution is considered 
higher quality, more valuable information.  
For many researchers, only molecular se-
quencing approaches can reveal any “mecha-
nistic” understanding: cytogenetic profiles are 
merely descriptive [4]. No wonder “sequenc-
ing everything” has become a new trend for 
data collection in biological research.   

Ironically, the surprising results of vari-
ous large scale-omics studies, including the 
Human Genome Project, Personal Genome 
Project, and Cancer Genome Project, have 
forcefully challenged the molecular rationale 
that focuses on “molecular part characteriza-
tion” rather than system behavior at more 
suitable levels of genomic-systems.  

For example, the “highly predictable” 
relationship between genes and phenotypes 
has become increasingly complicated, even 
more so with high degrees of uncertainty.  
Most complex traits often cannot be explained 
by polygenic models as the missing heritabil-
ity seems to be caused by the emergent sys-
tem behavior of a closely connected yet adap-
tive genomic network within dynamic envi-
ronments. Such emergent properties are hard 
to link to a limited number of either dominant 
genomic or environmental factors, even with 
whole genome scanning methodologies based 
on huge numbers of samples. A system is 
much more than the collection of all parts. 

Similarly, a more specific puzzle comes 
from the current Cancer Genome Project. Its 
goal, based on the gene mutation theory of 
cancer, is to identify a key limited number of 
common cancer gene mutations.  Presumably, 
by sequencing many cancer samples for each 
cancer type, the pattern of driver genes will 
emerge from the background of heterogeneity 
or “genomic noise.” Quite the opposite is true, 
however. What was detected was a high de-
gree of heterogeneity (at multiple genomic 
and nongenomic, including epigenetic, lev-
els), which reflects the stochastic nature of 
genomic changes in most cancers [1, 2]. 

While it is disappointing to fail the ini-
tial goal of identifying common mutation 
drivers, the sequencing data did confirm the 
importance of cytogenetic findings that chro-
mosomal changes are the common drivers of 

cancer evolution.  First, it confirms the two 
phases of cancer evolution (punctuated and 
stepwise) in most cancer types [5, 6]; Second, 
it endorses the importance of Genome Chaos 
in evolutionary phase transition [7-9]; Third, 
it supports the significance of heterogeneity in 
cancer, as previously ignored “genomic 
noise” actually represents evolutionary poten-
tial and can be used as a new biomarker to 
monitor system instability [1-2]; and Fourth, 
it validates the conclusion that profiles of 
chromosomal abnormalities have much better 
clinical prediction value than gene mutation 
data [10]. 

Why is cytogenetic data more powerful 
than individual gene mutation data? The ge-
nome theory of cancer and organismal evolu-
tion offers a clear explanation: the chromo-
some is not just the carrier of genes, but also 
the genomic organizer at a higher level of or-
ganization.  More specifically, the chromo-
somal sets encode a new type of bio-
information above genes.  In the perspective 
of systems biology, the network of gene inter-
action is the key.  However, what defines the 
gene interaction is unknown.  The genome 
theory proposes that the physical platform of 
the gene interaction is provided by the karyo-
type coding, where the physical relationship 
of genes/regulatory elements along and 
among chromosomes can form action do-
mains within the 3D nuclei. When the karyo-
type coding is changed by chromosomal nu-
merical or/and structural changes, new action 
domains will form, leading to changes of the 
gene interaction relationship, often at the 
global level [11].  Those variants form the 
genomic basis for different types of diseases 
when interacting with dynamic environments 
[12].   

Knowing the ultimate importance of 
genome-encoded information (system inher-
itance) and its relevance to biological pro-
cesses, from evolutionary mechanisms to im-
plications in disease formation, a new re-
search priority needs to be established in the 
field of genomics and evolution, as well as 
molecular medicine [13]. First, a new frame-
work embracing the multiple levels of ge-
nomics needs to be established by accepting 



Мини-обзор 

Mini-review 

Научные результаты биомедицинских исследований. 2020. Т. 6, № 1. С. 5-8 
Research Results in Biomedicine. 2020. Vol. 6, № 1. Р. 5-8 

7 

the fact that not all levels of organization are 
equal. Long-ignored chromosomal level pro-
filing might be more useful than DNA se-
quencing, especially during the macro-cellular 
evolutionary phase. Second, efforts are need-
ed to build technical platforms suitable for 
chromosomal profiling [14-19].  There is 
much to be done: a) Systematic identification 
of different types of chromosomal numeri-
cal/structural changes, many of which have 
been considered “noise” in previous studies 
due to the lack of clonality; b) Understanding 
the relationship among various subtypes of 
chromosomal abnormality (from aneuploidy 
to polyploidy, from simple translocations to 
chaotic genome) and comparing their contri-
butions to disease processes; c) Acceptance of 
using Non-Clonal Chromosomal aberrations 
or NCCAs to study genome instability and 
unify different molecular mechanisms; d) Pro-
filing both individual cells and population dy-
namics in watch evolution in action experi-
ments.  Third, new knowledge of genome-
based genomics and evolution needs to be ap-
plied into disease studies, especially when 
dealing with complex issues such as genomic 
mosaicism, phase transitions of somatic evo-
lution, and the interaction between genomics 
and environment [20-22].  

It is thus timely to write this editorial to 
remind readers of the importance of data col-
lection at the chromosomal level in current 
biomedicine. Fortunately, the genome theory 
has outlined the key rationales and conceptual 
frameworks of genome-based genomic and 
evolutionary ideas, based on genome-defined 
bioinformation principles [1]. 
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